An edge detection technique using genetic algorithm-based optimization

نویسندگان

  • Suchendra M. Bhandarkar
  • Yiqing Zhang
  • Walter D. Potter
چکیده

-In this paper we present a genetic algorithm-based optimization technique for edge detection. The problem of edge detection is formulated as one of choosing a minimum cost edge configuration. The edge configurations are viewed as two-dimensional chromosomes with fitness values inversely proportional to their costs. The design of the crossover and the mutation operators in the context of the two-dimensional chromosomal representation is described. The knowledge-augmented mutation operator which exploits knowledge of the local edge structure is shown to result in rapid convergence. The incorporation ofmeta-level operators and strategies such as the elitism strategy, the engineered conditioning operator and adaptation of mutation and crossover rates in the context of edge detection are discussed and are shown to improve the convergence rate. The genetic algorithm with various combinations of meta-level operators is tested on synthetic and natural images. The performance of the genetic algorithm-based cost minimization technique is compared both qualitatively and quantitatively with local search-based and simulated annealing-based cost minimization approaches. The genetic algorithm-based technique is shown to perform very well in terms of robustness to noise, rate of convergence and quality of the final edge image. Genetic algorithm Edge detection Cost minimization

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Technique for Steganography Method Based on Improved Genetic Algorithm Optimization in Spatial Domain

This paper devotes itself to the study of secret message delivery using cover image and introduces a novel steganographic technique based on genetic algorithm to find a near-optimum structure for the pair-wise least-significant-bit (LSB) matching scheme. A survey of the related literatures shows that the LSB matching method developed by Mielikainen, employs a binary function to reduce the numbe...

متن کامل

Noisy images edge detection: Ant colony optimization algorithm

The edges of an image define the image boundary. When the image is noisy, it does not become easy to identify the edges. Therefore, a method requests to be developed that can identify edges clearly in a noisy image. Many methods have been proposed earlier using filters, transforms and wavelets with Ant colony optimization (ACO) that detect edges. We here used ACO for edge detection of noisy ima...

متن کامل

Design Optimization of Axial Flux Surface Mounted Permanent Magnet Brushless DC Motor For Electrical Vehicle Based on Genetic Algorithm

This paper presents the design optimization of axial flux surface mounted Permanent Magnet Brushless DC motor based on genetic algorithm for an electrical vehicle application. The rating of the motor calculated form vehicle dynamics is 250 W, 150 rpm. The axial flux surface mounted Permanent Magnet Brushless DC (PMBLDC) motor was designed to fit in the rim of the wheel. There are several design...

متن کامل

DAMAGE DETECTION IN THIN PLATES USING A GRADIENT-BASED SECOND-ORDER NUMERICAL OPTIMIZATION TECHNIQUE

The purpose of the present study is the damage detection in the thin plates in terms of the wide application of such structures in various branches of engineering such as structural, mechanical, aerospace, shipbuilding, etc. using gradient-based second-order numerical optimization techniques. The technique used for optimization in this study is the second-order Levenberg-Marquardt algorithm (SO...

متن کامل

An empirical study on statistical analysis and optimization of EDM process parameters for inconel 718 super alloy using D-optimal approach and genetic algorithm

Among the several non-conventional processes, electrical discharge machining (EDM) is the most widely and successfully applied for the machining of conductive parts. In this technique, the tool has no mechanical contact with the work piece and also the hardness of work piece has no effect on the machining pace. Hence, this technique could be employed to machine hard materials such as super allo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Pattern Recognition

دوره 27  شماره 

صفحات  -

تاریخ انتشار 1994